Positively curved homogeneous metrics on spheres
نویسندگان
چکیده
منابع مشابه
Closed geodesics on positively curved Finsler spheres
In this paper, we prove that for every Finsler n-sphere (S, F ) for n ≥ 3 with reversibility λ and flag curvature K satisfying ( λ λ+1 )2 < K ≤ 1, either there exist infinitely many prime closed geodesics or there exists one elliptic closed geodesic whose linearized Poincaré map has at least one eigenvalue which is of the form exp(πiμ) with an irrational μ. Furthermore, there always exist three...
متن کاملNonnegatively and Positively Curved Invariant Metrics on Circle Bundles
We derive and study necessary and sufficient conditions for an S-bundle to admit an invariant metric of positive or nonnegative sectional curvature. In case the total space has an invariant metric of nonnegative curvature and the base space is odd dimensional, we prove that the total space contains a flat totally geodesic immersed cylinder. We provide several examples, including a connection me...
متن کاملOn the average indices of closed geodesics on positively curved Finsler spheres
In this paper, we prove that on every Finsler n-sphere (S, F ) for n ≥ 6 with reversibility λ and flag curvature K satisfying ( λ λ+1 )2 < K ≤ 1, either there exist infinitely many prime closed geodesics or there exist [ 2 ] − 2 closed geodesics possessing irrational average indices. If in addition the metric is bumpy, then there exist n − 3 closed geodesics possessing irrational average indice...
متن کاملEinstein Metrics on Spheres
Any sphere S admits a metric of constant sectional curvature. These canonical metrics are homogeneous and Einstein, that is the Ricci curvature is a constant multiple of the metric. The spheres S, m > 1 are known to have another Sp(m + 1)-homogeneous Einstein metric discovered by Jensen [Jen73]. In addition, S has a third Spin(9)-invariant homogeneous Einstein metric discovered by Bourguignon a...
متن کاملGeometry of Cyclic Quotients, I: Knotted Totally Geodesic Submanifolds in Positively Curved Spheres
1. Topology of cyclic quotients. 1.1. Here we collect the facts we need on the topology of cyclic quotients.Let N be a smooth manifold with a smooth action of a cyclic group Zn. Assume that (a) All stationary subgroups of points in N are either trivial or Zn itself (this is automatically so, if n is prime) (b) All components of the fixed point set Fix (N) are of codimension 2. Then the quotient...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Zeitschrift
سال: 2008
ISSN: 0025-5874,1432-1823
DOI: 10.1007/s00209-008-0332-7